Muhammad Fakhrul Safitra, Lubis, M., & Hanif Fakhrurroja. (2023). Counterattacking Cyber Threats: A Framework for the Future of Cybersecurity. Sustainability (Basel), 15(18), 13369–13369. https://doi.org/10.3390/su151813369.
Shaukat, K., Luo, S., Vijay Varadharajan, Hameed, I. A., & Xu, M. (2020). A Survey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE Access, 8, 222310–222354. https://doi.org/10.1109/access.2020.3041951.
Kalle Kujanpää, Victor, W., & Ilin, A. (2021). Automating Privilege Escalation with Deep Reinforcement Learning. ArXiv (Cornell University). https://doi.org/10.1145/3474369.3486877.
Pedregosa, F., Pedregosa@inria, F., Fr, Org, G., Michel, V., Fr, B., … Passos, A. (2011). Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot Edouard Duchesnay. Journal of Machine Learning Research, 12, 2825–2830. Retrieved from https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/.
Ovidiu Valea, & Ciprian Oprisa. (2020, September 3). Towards Pentesting Automation Using the Metasploit Framework. Retrieved April 3, 2024, from ResearchGate website: https://www.researchgate.net/publication/347188530_Towards_Pentesting_Automation_Using_the_Metasploit_Framework.
Arun, S., & Bijimol, T. K. (2021). A research work on information gathering tools. In Proceedings of the National Conference on Emerging Computer Applications (SNCECA-2021) (p. 118). Amal Jyothi College of Engineering. https://doi.org/10.5281/zenodo.5101265.
Asamoah, H. (2019). Antivirus software versus malware. Retrieved April 3, 2024, from Архів кваліфікаційних робіт (2019-2020 ÷ 2022-2023 н.р.) website: https://jarch.donnu.edu.ua/article/view/10531.
Calix, R. A., Singh, S. B., Chen, T., Zhang, D., & Tu, M. (2020). Cyber Security Tool Kit (CyberSecTK): A Python Library for Machine Learning and Cyber Security. Information, 11(2), 100–100. https://doi.org/10.3390/info11020100.
Maeda, R., & Mimura, M. (2021). Automating post-exploitation with deep reinforcement learning. Computers & Security, 100, 102108–102108. https://doi.org/10.1016/j.cose.2020.102108.
Raschka, S., Patterson, J., & Nolet, C. (2020). Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence. Information, 11(4), 193–193. https://doi.org/10.3390/info11040193.
Quilantang, K. A. G., Rivera, J. A. C., Pinili, M. V. M., Magpantay, A. J. N. R., Blancaflor, E. B., & Pastrana, J. R. A. M. (2021). Exploiting Windows 7 vulnerabilities using penetration testing tools. In The 2021 9th International Conference on Computer and Communications Management. https://doi.org/10.1145/3479162.3479181.
Santos, D. (2021, November). Comparison of Paid Subscription vs Freeware Software on Antivirus Program. Retrieved April 3, 2024, from Hawaii.edu website: https://dspace.lib.hawaii.edu/items/2a4b1eb5-6307-4b24-8d4a-e2952db09e98.
Thomas, R., & M. Nachamai. (2017). Performance Investigation of Antivirus – A Comparative Analysis. Oriental Journal of Computer Science and Technology, 10(1), 201–206. Retrieved from https://www.computerscijournal.org/vol10no1/performance-investigation-of-antivirus-a-comparative-analysis.
Sarker, I. H. (2022). Machine Learning for Intelligent Data Analysis and Automation in Cybersecurity: Current and Future Prospects. Annals of Data Science (Print), 10(6), 1473–1498. https://doi.org/10.1007/s40745-022-00444-2.
K. Chandra Mouli, B. Indupriya, D. Ushasree, Ch.V. Raghavendran, Rawat, B., & Bhukya Madhu. (2023). Network Intrusion Detection using ML Techniques for Sustainable Information System. E3S Web of Conferences, 430, 01064–01064. https://doi.org/10.1051/e3sconf/202343001064.
Naeem, S., None Aqib Ali, None Sania Anam, & Ahmed. (2022). Machine Learning for Intrusion Detection in Cyber Security: Applications, Challenges, and Recommendations. Innovative Computing Review, 2(2). https://doi.org/10.32350/icr.0202.03.
Abu Al-Haijaa, Q., & Ishtaiwia, A. (2021). Machine learning based model to identify firewall decisions to improve cyber-defense. International Journal of Advanced Computer Science and Applications, 11(4). https://doi.org/10.18517/ijaseit.11.4.14608.
Applebaum, S., Gaber, T., & Ahmed, A. (2021). Signature-based and Machine-Learning-based Web Application Firewalls: A Short Survey. Procedia Computer Science, 189, 359–367. https://doi.org/10.1016/j.procs.2021.05.105.
Hilala Alturkistani, & El-Affendi, M. A. (2022). Optimizing cybersecurity incident response decisions using deep reinforcement learning. International Journal of Power Electronics and Drive Systems (Online), 12(6), 6768–6768. https://doi.org/10.11591/ijece.v12i6.pp6768-6776
Adabi Raihan Muhammad, Parman Sukarno, & Aulia Arif Wardana. (2023). Integrated Security Information and Event Management (SIEM) with Intrusion Detection System (IDS) for Live Analysis based on Machine Learning. Procedia Computer Science, 217, 1406–1415. https://doi.org/10.1016/j.procs.2022.12.339.
Hamid Bostani, & Veelasha Moonsamy. (2023). EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box Android Malware Detection. Computers & Security, 103676–103676. https://doi.org/10.1016/j.cose.2023.103676.
Nor Zakiah Gorment, Selamat, A., Lim Kok Cheng, & Ondrej Krejcar. (2023). Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions. IEEE Access, 11, 141045–141089. https://doi.org/10.1109/access.2023.3256979
Esra Altulaihan, Abrar Alismail, Rahman, H.sA. (2023). Email Security Issues, Tools, and Techniques Used in Investigation. Sustainability, 15(13), 10612–10612. https://doi.org/10.3390/su151310612.
Yasin, S., & Hadi Azmi, I. (2023). EMAIL SPAM FILTERING TECHNIQUE: CHALLENGES AND
SOLUTIONS. 101(13). Retrieved from https://www.jatit.org/volumes/Vol101No13/6Vol101No13.pdf.
- Abstract viewed - 444 times
- Pdf downloaded - 384 times
Affiliations
Azran Abdul Razak
Jabatan Teknologi Maklumat dan Komunikasi (JTMK), Politeknik Tuanku Syed Sirajuddin (PTSS), 02600 Arau, Perlis, Malaysia
Helmy Hanyff Hairudin Ruzaili
School of Computing, Universiti Utara Malaysia (UUM), 06010 Sintok, Kedah, Malaysia
Mohamad Fadli Zolkipli
School of Computing, Universiti Utara Malaysia (UUM), 06010 Sintok, Kedah, Malaysia
How to Cite
Study on Machine Learning Implementation in Cybersecurity for Security Defend and Attack
Vol 7 No 2 (2024): June
Submitted: Apr 3, 2024
Published: Jun 4, 2024
Abstract
This comprehensive study explores the utilization of Machine Learning (ML) in the field of cybersecurity, emphasizing its substantial contribution to both defensive and offensive strategies. In contrast to conventional rule-based methodologies, machine learning systems can dynamically adjust to changing threats by acquiring patterns and anomalies from vast datasets. This study investigates the defensive utilization of machine learning (ML) in threat detection, anomaly identification, and security breach prediction. Additionally, it examines the offensive applications of ML, wherein attackers exploit vulnerabilities by applying advanced ML techniques. The study additionally examines the pragmatic implementations of machine learning (ML) in cybersecurity, specifically emphasizing a range of tools such as DeepExploit, Scikit-learn, Metasploit, Nmap, and antivirus software. An assessment is conducted to evaluate the defensive capabilities of Intrusion Detection Systems, firewalls, Security Information and Event Management systems, and email security solutions that utilize Machine Learning. Machine learning in these domains signifies a pivotal advancement in cybersecurity tactics, empowering firms to address cyber risks better.